Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227271

RESUMEN

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.

2.
Mol Neurobiol ; 60(5): 2910-2921, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36749560

RESUMEN

Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (ß-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.


Asunto(s)
Células-Madre Neurales , Vía de Señalización Wnt , Humanos , Células Cultivadas , Células-Madre Neurales/metabolismo , Neurogénesis , Diferenciación Celular , Feto , Hipoxia/metabolismo , Oxígeno/farmacología , Oxígeno/metabolismo
3.
J Vis Exp ; (186)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36121271

RESUMEN

Fracture healing is a physiological process resulting in the regeneration of bone defects by the coordinated action of osteoblasts and osteoclasts. Osteoanabolic drugs have the potential to augment the repair of fractures but have constraints like high costs or undesirable side effects. The bone healing potential of a drug can initially be determined by in vitro studies, but in vivo studies are needed for the final proof of concept. Our objective was to develop a femur osteotomy rodent model that could help researchers understand the development of callus formation following fracture of the shaft of the femur and that could help establish whether a potential drug has bone healing properties. Adult male Wistar albino rats were used after Institutional Animal Ethics Committee clearance. The rodents were anesthetized, and under aseptic conditions, complete transverse fractures at the middle one-third of the shafts of the femurs were created using open osteotomy. The fractures were reduced and internally fixed using intramedullary K-wires, and secondary fracture healing was allowed to take place. After surgery, intraperitoneal analgesics and antibiotics were given for 5 days. Sequential weekly x-rays assessed callus formation. The rats were sacrificed based on radiologically pre-determined time points, and the development of the fracture callus was analyzed radiologically and using immunohistochemistry.


Asunto(s)
Fracturas del Fémur , Animales , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/cirugía , Fémur/diagnóstico por imagen , Fémur/cirugía , Curación de Fractura/fisiología , Masculino , Osteotomía , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...